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Microhardness anisotropy of silicon carbide 
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The effect of crystallographic anisotropy on the room-temperature Knoop microhardness 
of silicon carbide has been studied on each of three major sections of alpha single crystals 
(namely: {0001} ,  {1 TOO} and {1120} ) ,  measurements being made at 10 ~ angular 
intervals over a range sufficient to include all the non-equivalent indenter orientations on 
each crystal section. The results are presented graphically and compared with a number 
of possible anisotropies computed for different slip systems using a model based on the 
effective resolved shear stress (ERSS) model of Brookes et aL [1] with a modification 
suggested by Arnell [2]. The results are interpreted to show that plastic deformation 
appears to occur preferentially on the {1 T00}<I 1 20) and {0001} (11  20) slip systems 
over different ranges of orientations of the indenter. Further, it has been possible to 
estimate the ratio of the critical resolved shear stresses of these systems, the {0001  } 
(1120)  system having a CRSS between 1.2 and 2.1 times that of the {1 T00~(11 E0) 
system. Computation has also been used to investigate the detailed effect of the form of 
Brookes' constraint factor and the reliability of hardness anisotropies predicted in this 
way. The possible roles of slip and other deformation mechanisms in governing the 
response of brittle solids subjected to indentation hardness tests are also discussed. 

1. Introduct ion 
It has been shown by Brookes et al. [1] that, using 
an analysis based on the varying effective resolved 
shear stress (ERSS) on any member of an operative 
slip system family, it is possible to explain-the 
observed anisotropy in Knoop microhardness 
measurements in a range of single-crystal materials 
in terms of discrete slip-system activity. This 
potentially simple, non-destructive means of 
investigating slip behaviour has subsequently been 
used for correlation with etch pitting and trans- 
mission electron microscopy (TEM) dislocation 
observations (e.g. [1,3]),  for examining the 
effects of temperature and environment on slip 
behaviour (e.g. [4, 5]) and, as here, for identifying 
active slip systems in solids which are brittle in 
conventional mechanical tests (e.g. transition 
metal carbides [3-8]) .  Silicon carbide probably 
only deforms plastically in response to hardness 
and wear tests (e.g. [9-12])  and the resultant 

plastic deformation is highly localized and difficult 
to study by other techniques (e.g. [12]). However, 
plasticity is critical in understanding the surface 
deformation behaviour of such brittle solids in 
wear- and erosion-resistant engineering applications 
(e.g. [14]), and this is one objective of the hard- 
ness anisotropy study reported here. 

Although the analytical model of Brookes et  al. 

has proved generally successful, it contains a 
number of simplifications and assumptions which 
have been subject to criticism (e.g. [2]) and some 
of these are discussed in this paper. Some measure 
of the reliability of the ERSS model has been 
established from the results of a systematic simu- 
lation of the effect of a range of constraint factors 
(governing the geometry of plastic flow) and an 
enhanced model has been used to explain the 
observed room temperature hardness anisotropy 
of SiC single crystals. Further, it has been possible 
to derive the ratio of the critical resolved shear 
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TAB LE I Shaffer's hardness data [18] 

Plane Indenter orientation KHN (100 gf load) (kgf mm- 2) 

{0 0 01} parallel to ( 1 i 0 0) 2954 -+ 27 
{000 1} parallel to <1 120) 2917 -+ 10 

{1 iO0} parallel to <000 1> 2129 +- 45 
{1i00} perp. to <0001> 2755+40 

{1 1 20} paraUel to <0 0 0 1) 2391 -+ 34 
{1120} perp. to (0001) 2755-+22 

stresses (CRSS) of the two slip systems deduced 
to control hardness anisotropy and to estimate the 
yield stress of  SiC at room temperature. 

Some data on the Knoop hardness anisotropy 
of silicon carbide has been published by Shaffer 
[15] and this was rationalized in terms of one 
possible slip system ({1 i-0 0}(1 1 20)) by Brookes 
et al. [1 ]. However, these data, which are repro- 
duced in Table I, were limited to two orientations 
on each of the three principal sections {000 1~, 
{1 i-00}, and {1 1 20} and this is insufficient to 
allow a conclusive identification of the operative 
slip system to be made. A more comprehensive 
series of  experiments, with data taken at 10 ~ 
intervals, will b e  reported here. These measure- 
ments reveal detail in the hardness anisotropy not 
evident in the previous data and allow greater 
confidence to be placed in the identification of 
the operative slip systems. 

2. Deformation mechanisms - t h e  
role of slip 

A question central to the ERSS approach concerns 
the role of slip in determining the hardness response 
of brittle solids. Firstly it must be appreciated that 
the stresses generated beneath hardness indenters 
are complex,* localized, difficult to model, and 
generally far larger than in any conventional mech- 
anical test. Further, the equilibrium stresses 
associated with the final measured hardness inden- 
tation are the minimum local stresses experienced 
as the indenter penetrates the surface. Thus, in 
hard, stiff solids, post facto examination of the 
indented material may show no evidence of any 

unusual deformation modes associated with the 
initial very high stress state, particularly if such 
processes are either completely reversible (e.g. 
densification) or leave the material crystallographi- 
cally perfect (e.g. block shear, which has the same 
crystallographic character as slip as far as the 
ERSS model is concerned). 

A pressure-sensitive densification mechanism 
for zinc-blende and wurtzite structure crystals 
(e.g. SiC) exists, similar to the Tin alpha-beta 
transition, which has been observed to occur in a 
large number of  IV, IV- IV,  I I I -V ,  and I I - V I  
elements and compounds using high pressure ceils 
(e.g. [19-21]) .  Trefflov et al. [22] have suggested 
that the temperature dependence of hardness and 
microcracking of SiC is similar to that found in Ge, 
Si and InSb and have tentatively suggested that 
this is consistent with a metallic transformation 
occurring.t Further, this densification pressure for 
SiC has been calculated from thermodynamic data 
to be 64GPa [21] which should be compared with 
69 GPa (700 kgfmm -2) which is the highest hard- 
ness number (H) recorded in the present study for 
a 50 gf Vickers indentation on SiC {0 0 0 i}.~: Block 
shear may also occur, since Tabo~'s estimate of  
the highest shear stress beneath an indenter, of  
~H /5  [26], gives a value of 5 to 14GPa for SiC 
which compares with a theoretical shear strength 
( " G / 1 0 )  of  19GPa calculated from available 
estimates of the moduli [27, 28]. Therefore, it is 
quite possible that the critical stresses for block 
shear, and perhaps for densification, will be reached 
near the tip of  the indenter at the beginning of 
indentation. 

* Although the large shear components of this stress state axe generally held to be responsible for slip, the hydrostatic 
component may also affect plasticity in ionic crystals by controlling both the Peierls' stress and dislocation velocity 
(e.g. [ 16, 17 ]). The large tensile stresses produce indentation fracture (e.g. [ 18 ] ). 
t A similar 'crowdionic diffusion' plasticity mechanism has been postulated to occur during indentation of materials 
of the NaCI structure [23] and has been demonstrated in alumina [24]. 
$ SiC displays a pronounced indentation size effect (e.g. [25]) and thus the hardness appears to decrease with increas- 
ing load (e.g. 25 GPa for a 500 gf Knoop indentation). 
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Whatever other deformation mechanism may 
also occur, slip appears to be an important 
response of materials to indentation since dis- 
locations have been observed, but not unambig- 

:uously characterized by TEM, in association with 
hardness indentations, wear tracks, and erosive im- 
pact sites in silicon carbide [10, 11, 14, 29, 30]. 
however, etch-pitting of indented SiC single crystals 
does not produce the rays of pits seen in ionic or 
metallic crystals (e.g. [31,32]),  the indentation 
itself being etched away to form a figure which is 
believed to represent the distribution of residual 
plastic strain. This technique has been used to 
identify a possible slip-system controlling inden- 
tation on SiC {000 1~ as {1 10/}(1 1 20)  [13]. 
Dislocations in the proximity of wear tracks in 
SiC have also been observed to occur at the 
periphery of a zone of heavily micro-cracked and 
rotated material which might result from the 
relaxation of densified material as the local stresses 
decrease [33]. Thus the role of slip may some- 
times be a secondary one in accommodating the 
displacements from other deformation mech- 
anisms. Further, the fact that, for either predomi- 
nantly ductile or brittle materials, the trends in 
hardness anisotropy are not dramatically sensitive 
to variations in load [10, 11,34],  further suggests 
that slip is the common controlling feature (and 
sections 4, 5 and 7 treat the phenomenon in this 
way) but perhaps it does not control the actual 
equilibrium hardness pressure at a given load. This 
pressure, however, can be thought of in terms of a 
'~yield stress" for whatever combined mechanisms 
may occur and this will be briefly considered 
further in Section 3. 

Finally, the possible effects of elastic anisotropy, 
elastic recovery or the local relaxation of the five 
independent slip system criterion around hardness 
indentations in solids of high ElY ratio have been 
too complex for further investigation but may 
play some role in the indentation process. 

3. The yield stress 
Johnson [35] and Studman et al. [36] have 
developed the "spherical cavity model" of the 
indentation process, originally devised for brittle 
solids by Marsh [9], whereby displaced material 
is accommodated by elastic compression and the 

displacements are radial rather than directed 
towards the surface to form a "pile-up". One 
consequence of the "radial displacement model" 
is that it enables an equation to be derived relating 
hardness to the plastic yield stress [35, 37, 38] : 

H _  l +  l + l n  
Y 2 6(1 -- v) ' 

(1) 

where v is Poisson's ratio and/3 the contact angle 
between the indenter facet and the surface of the 
Solid under test. 

In situations where this model is thought to 
apply, the plastic yield stress ( l  o can be calcu- 
lated by an iterative method [37]. Unfortunately, 
measured hardness values depend strongly on the 
load used, and the model does not allow for this 
indentation size effect [25]. Nevertheless, taking 
E = 469 GPa and v = 0.17 [27, 39, 40],  and using 
the hardness pressures quoted in the previous 
section, the plastic yield stress is calculated to be 
between 12 and 52GPa (i.e. G/17 and G/4 taking 
G = 193 GPa [28]). This upper limit is in the same 
range as the theoretical shear strength calculated 
previously (allowing for the very rough nature of 
such estimates) but does not allow any conclusions 
to be drawn as to the deformation mechanisms in- 
volved, i.e. distinguishing dislocation slip from 
block shear, slip or densification. 

4. Modelling hardness anisotropy - the 
ERSS model 

The ERSS model of Brookes et al. has successfully 
explained observed hardness anisotropies* on a 
range of single-crystal materials and has only failed 
where twinning [2] or indentation creep has had 
an effect [41]. This success is surprising as the 
model is only concerned with the geometry of 
discrete slip systems and does not consider the 
differing Peierls' stresses and mobilities of dis- 
locations of different character on identical slip 
systems (e.g. [4, 42]) or other aspects of both 
yielding and work hardening. It also makes an 
assumption about the stress state (i.e. that it is 
predominantly tensile in the critical region con- 
trolling the plastic behaviour) which is believed 
by some workers to be untrue (e.g. [26]). For 

*It should be appreciated that the mm2 plane symmetry of the Knoop indenter limits the experimentally observed 
hardness anisotropy to belonging to the Laue class of the crystal. Thus details of point group or space group control of 
deformation mechanisms (e.g. the effect of polarity of SiC crystals) cannot be established in this way. 
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example, for low E l Y  materials, where most of 
the deformation occurs immediately beneath the 
indenter [13], a compressive model based on the 
radial forces would appear to be more appropriate. 
However, Brookes et al. found that a model based 
on tensile rather than compressive forces generally 
agreed with the experimental data [1] although 
Armstrong and co-workers have used a compressive 
force version to examine work-hardening effects 
[43,44]. 

The Brookes' model essentially considers an 
effective resolved shear stress (ERSS) which is 
the Schmidt-Boas resolved shear stress,r, corrected 
by a constraint factor ( C F -  see next section) 
which was introduced in an attempt to allow for 
the constraints on plastic flow imposed by the 
presence of both the indenter and the elastic 
hinterland [1], i.e. 

r = (L/A)  cos X cos r (2) 

ERSS = r x 0.5 [sin 3' + cos ~] (3) 

where L is the force on a cylindrical test element 
of cross-sectional area A, and thus the function F 
is defined for the ith facet of the indenter by 

ERSS = (L/A)  F(X, ~b, % ~) (4) 

where me symbols and angles are defined in Fig. 
7 of [1]. Furthermore, the present study has used 
a method developed and discussed by Arnell [2] / 
whereby the hardness (/-/) is related to the critical 
resolved shear stress (CRSS) for yield by a geo- 
metrical factor f ,  i.e. 

~ (CRSS) f (5) 

where f i s  the function 1IF summed over all facets. 
[ is then calculated for each slip system, for each 
crystal section and for every indenter orientation 
on that section.* However, while this method 
predicts the shape of the anisotropy it gives no 
indication of its magnitude (e.g. the observed 5 : 1 
difference in magnitude for the same anisotropy 
observed in isostructural MgO and LiF). 

The further effect of work hardening has not 
been satisfactorily incorporated into any model 
and it has been  argued that it can either increase 
or decrease the magnitude of the anisotropy, 
namely: 

(a)that the work-hardening term is itself 
strongly anisotr6pic and thus increases the magni- 

tude of the hardness anisotropy from that given 
by the geometrical formula alone [43]. 

(b) that the work hardening term is fairly iso- 
tropic and thus decreases the relative magnitude 
of the calculated anisotropy [2]. 

Therefore, in order to elucidate the effects of 
work hardening or hardness anisotropy, it is at 
least necessary to Consider possible dislocation 
reactions in detail. This has not been considered 
further here, but an example of a possible work- 
hardening effect is described in Section 7. 

5 .  Modelling hardness anisotropy - the 
constraint factor 

The suggestion that the geometry of the indenter 
itself might provide a constraint on the displace- 
ment experienced by slipped material was first 
made by Daniels and Dunn [45] who added a 
factor cos(~) to the Sclimidt-Boas formula 
(Equation 2) to allow for slip plane rotation, this 
being easiest when the axis of rotation of the slip 
system lies in the plane of the indenter facet. 
However, this model could not account for the 
various {1 1 0} slip plane activities observed by 
Brookes et al. in MgO [1] and they suggested a 
more complex constraint involving the angular 
orientations (3' and if) of both the axis of rotation 
and the slip direction to the facet horizontal. This 
led them to decide upon the following boundary 
conditions: 

CF = 0 when 3' = 0 (which makes ff = 90), 

i.e. the constraint is a maximum when the slip 
direction is parallel to the facet (and thus the 
rotation axis is perpendicular to the horizontal 
line in the indenter facet). 

CF = 1 when ~ = 0 (which makes 3' = 90), 

i.e. the constraint is a minimum when the rotation 
axis is parallel to the facet (and thus the slip direc- 
tion is not parallel to the facet, so material can 
flow upwards [1 ]). 

The function used by Brookes et al. is one of 
the simplest to fulfil these conditions, namely: 

CF = 0.5 [cos ~b + sin 3']. (6) 

It should be emphasised that this constraint fac- 
tor appears to be inappropriate for stiff, brittle 
ceramics which are thought to conform to inden- 
tation by radial displacements and have been 

*A listing of  the program in FORTRAN is available on application to the authors. 
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observed not to form surface "pile-ups". However, 
in the absence of a more appropriate formulation 
of the likely constraints in these cases, and, since 
the ERSS model with Brookes' constraint seems 
to have successfully described the hardness aniso- 
tropy observed in a large number of ceramics, 
these boundary conditions have been retained 
here. There is obvious scope for extending this 
study by considering boundary conditions which 
(a) take account of radial displacements and 
(b) include a third angle because two angles alone 
do not uniquely define the orientation of the slip 
system with respect to the indenter. 

Further constraints regarding the direction of 
material flow, either upward or radially, depend 
critically on the ductile/elastic character of the 
material in terms of its ElY ratio. Thus, if the 
controlling slip systems could be identified inde- 
pendently, the precise form of the observed hard- 
ness anisotropy might be used to investigate 
differences in the relative importance of radial 
and surface-directed displacements by adjusting 
the constraint factor until the model fitted the 
results. However, such an approach has not been 
followed further here. 

It is unlikely that there would be discontinuities 
in the gradient of the function CF with respect to 
the angles 4 and 3 .̀ So additional conditions would 

be: aCF aCF 
0a a_ = a~a+ (7) 

where ~ is any and all of the angles ~, q~, 3, and 4. 
This means that any function that can be expressed 
as a Fourier series could be a suitable constraint 
function. 

However, if a variety of constraint functions are 
used to calculate effective resolved shear stress 
plots, the variations between them will give some 
idea of the confidence which can be placed in 
them. For slip systems and indentation planes 
where the predictions are in good agreement, 
deviations of the experimental anisotropy from 
these predictions would strongly suggest either 
that another deformation mode was important 
(e.g. another slip system, twinning, or densification) 
or that the work hardening could be strongly 
orientation dependent in tl~at particular material. 
If, for some slip systems and some crystal sections, 
there are large variations in anisotropy when using 
different constraint factors, then little reliance 
should be placed on the model in these cases. 

To test the stability of the model with respect 

to variations in the form of the constraint factor, 
three functions were chosen in addition to tha t  
of Brookes et al., namely: 

CF(2) = 0.5 [(cos 4) ' / '  + (sin 3,)'/41 (8) 

CF(3) = 05 [(cos 4) 4 + (sin 3 )̀ 4] (9) 

CF(4) = 05  [(cos 4) '  + (sin 3,)'/4]. (10) 

CF(2) is much 'steeper', and CF(3) more gently 
sloping than that of Equation 6 at low and high 
values of 4 and 3 ,̀ but the reverse is the case in the 
middle range. CF(4) is asymmetric with respect to 
3' = 90 -- 4. These specific functions were chosen 
because they encompass a reasonable range of 
values (see Fig. 1) apparently wide enough to clearly 
display the stability of the ERSS model for basal 
and prismatic slip as compared with the instability 
for pyramidal slip (see section 7). In Figs. 3 to 5, 
the expected forms of the hardness anisotropies 
for each of the constraint factors have been super- 
posed and this means that there is now an intrinsic 
measure of the reliability of the ERSS model. When 
the model is unstable with respect to small changes 
model is unstable with respect to small changes 
in the constraint factor, it should be used with 
caution; up till now it has not been possible to 
distinguish these situations from those where the 
model is well behaved. 

It has already been shown that the yield stress 
of SiC can be determined and now the ERSS 
model will be used to distinguish between glide 
of different slip systems. 

6. Experimental determination of 
hardness anisotropy 

Silicon carbide single crystals were separated from 
blue-black Acheson aggregates supplied by 
Arendal Smeltewerk (Norway). The crystals were 
generally platelets with extensive ( ~ 1 0 m m  
square) basal surfaces bounded by a number of 
prominent cleavage or growth facets and were up 
to  3mm thick. The orientation of the crystal 
axes in these platelets was established by means 
of back-reflection Laue photographs taken with 
the X-ray beam perpendicular to the basal surface. 
The principal zones in these photographs were 
recognized from a standard [0 0 0 1 ] Laue photo- 
graph, itself indexed by comparison with an elec- 
tron diffraction pattern of the same specimen, 
using a cleavage facet as a reference. By comparison 
with published Laue photographs [46], the 
crystals appeared to contain mixed stacking 
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Figure 1 Three-dimensional 
plots of the four constraint 
factors: (a) equation 6, (b) 
equation 8, (c) equation 9, and 
(d) equation 10. 

CF(I 

CF(2 

sequences presumed to be predominantly of the 
6H [47] polytype and all crystallographic index- 
ing has been based on this assumption (see also 
the concluding remarks of Section 7). Specimens 
for basal plane tests were obtained by mounting 
and polishing the as-grown basal surfaces, whilst 
{1 ]-00~ and {1 1 20~ sections were obtained by 
cutting a crystal of previously determined orien- 
tation using a Capco Q35 annular diamond saw, 
the orientation of the cut surface being confirmed 
by a second Laue photograph. All specimens were 
mounted in resin and polished with diamond paste 
to a 0.25/~m finish prior to hardness testing [47]. 

1006 

Microhardness indentations were made and 
measured under ambient laboratory conditions 
using a Leitz Miniload which had been fitted with 
a rotating stage and angular scale. Although it is 
difficult to make meaningful comparisons of the 
absolute values obtained in separate microhardness 
experiments, it is possible to obtain reproducible 
self-consistent trends (e.g. in anisotropy) in a 
given experiment, provided certain precautions are 
taken. Therefore care was taken to ensure that the 
specimen was aligned correctly such that the 
indentations were symmetrical. The limit of 
acceptability was taken as an asymmetry of 10% 



CF(3 

CF(4 

which has been shown by Thibault and Nyquist 
[48] to produce no measurable change in the size 
of the indentation. A standard loading cycle, using 
a rise time of 12sec followed by 18sec at full 
load, was used for  all tests to eliminate variations 
due to indentation creep. All measurements used 
to generate one anisotropy curve were made using 
the same specimen and indenter and the inden- 
tations were made in a single session to eliminate 
variations due to changes in the environment or 
specimen setting, etc. The indentations were 
measured by a single observer in a single session, 
not necessarily at the same time as they were made, 

under consistent lighting conditions (artificial 
lighting in a darkened room). This eliminated any 
inconsistencies due to changes in visual perform- 
ance of the observer. 

For loads of 300 gf (2.94 N) and 500 gf (4.9 N), 
the Knoop hardness as a function of crystallogra- 
phic orientation on the basal plane was determined 
from the average lengths of sets of ten indentations 
for each indenter orientation, measurements being 
made at 10 ~ intervals over a 60 ~ range, starting 
with the long axis of  the indenter parallel to the 
trace of a { IY00~ facet (i.e. along (1 150)).  
These two loads were chosen because Knoop 
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indentations made with a load of 300 gf did not 
show a significant amount of indentation fracture 
whilst those made with a load of 500 gf did. It 
was found that the microhardness anisotropy was 
similar in both cases and thus not significantly 
affected by the incidence of cracking. This obser- 
vation can be justified by considering the pro- 
portion of work done by the indenter which is 

,used to create the fracture surfaces, typically 
less than 0.1% [49]. Measurements of Knoop 
microhardness anisotropy on {1 i'0 0} and {1 1 20} 
were performed with a 500 gf load only. On these 
prism planes measurements were made at 10 ~ 
intervals over a 90 ~ range starting with the long 
axis of the indenter parallel to the trace of {0 0 0 1 }, 
again taking the arithmetic mean over ten inden- 
tations at each Orientation. 

7. Results and discussion 
Typical hardness anisotropy data for each of the 
principal sections are presented graphically in 
Fig. 2. For each of these planes, simulations were 
obtained of the angular variation of the geometrical 
factor f, for a number of families of slip systems 
identified in SiC such as {0 0 0 1 }(1 1 20), {1 i 0  0} 
(1 1 20) [10] and various systems of the type 
{ h h 0 / } ( l l 2 0 )  as well as other conceivable 
candidates, such as {1 1 20}(1 TOO). A selection 

of curves of f as a function of indenter orientation 
are shown in Figs. 3-5.  

The hardness anisotropy of the basal plane 
(Fig. 2a) is modelled most successfully by assum- 
ing {1 i-00~(1 1 50) slip (Fig. 3b), corroborating 
the f'mdings of Adewoye and Page [13], even the 
cusp around [ 1 0 i 0 ]  being reproduced. The 
shaded bands in Fig. 3 show the spread of results 
obtained by using the four constraint factors. It 
can be seen that using only the constraint factor of 
Brookes et  al., the  slip system {1 TO 1}(1 1 20) 
might also be considered a likely candidate, but 
for such pyramidal slip systems the ERSS model is 
unreliable because of its sensitivity to the precise 
form of the constraint function (of. Fig. 3b and d 
and note the different vertical scales). 

The hardness anisotropy on the prism planes 
(Fig. 2b and c) is considerably more marked than 
that observed on the basal plane. In each case the 
lowest hardness was found with the long axis of 
the indenter parallel to [00 01] (in accordance 
with the data of Shaffer). This was interpreted by 
Brookes e t  al. as indicative of {1 i-00}(1 150) 
slip which, taking these limits in isolation, is 
consistent with the simulations of their model. 
However, the present work shows that the measured 
hardness value does not vary monotonically 
between the two principal orientations. Instead 
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Figure 2 Experimental Knoop hardness anisotropies de- 
termined on three different prominent planes for silicon 
carbide single crystals. In all cases a standard load of 
500 gf was used. The error bars represent plus and minus 
one standard error in the mean. (a) (0 0 0 1}, (b) {1 i 0  0}. 
(c) {1 1 2 0}. 
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there is an intermediate peak hardness at approxi- 
mately 60 ~ from [0 0 0 1] in each case and the 
observed hardness anisotropy does not correspond 
to the simulation of that due to any of the likely 
slip systems acting in isolation. However, it is 
possible to interpret the observed anisotropy on 
{! TOO} and {1 1 50} in terms of the joint action 

of the two most probable slip systems; {1 TOO} 
( 1 1 5 0 )  and { 0 0 0 1 } ( 1 1 5 0 ) .  Taking {1To0} 
for example, Fig. 4a and b show that, when the 
indenter axis is parallel to [ 0 0 0 1 ] ,  the expected 
f value for { 1 T o 0 } ( 1 1 5 0 )  slip is low, whilst 
that for {0001}(1120>  is slightly higher and 
would create an (unobserved) hardness peak 10 ~ 
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Figure 4 f plot on the (1 T 00) section for the two slip 
systemsi (a) {0001}(112-0~ (b) {1 i00}(1120>. (see 
Fig. 3 for key to symbols.) 

from [0 0 0 1]. Thus the former appears to be 
the preferred slip system at this indenter orien- 
tation implying that, since the fvalues for the two 
systems are nearly equal, the CRSS for {1 ]-00} 
slip is less than that for {0 0 01 } slip (and this is 
confirmed below). However, if this slip system 
alone were controlling the hardness, it would 
cause an increase in hardness to a maximum with 
the indenter 80 ~ from [0 0 01 ]. Thus the decrease 
in hardness between 60 ~ and 90 ~ from [0 00 1] 
must be due to activation of another slip system. 
Now, comparison of Fig. 4a and b shows that, 
for indenter orientations near [1 120] ,  the 
{0001}(11 50) slip system experiences a con- 
siderably higher effective resolved shear stress 
(i.e. a much lower/factor) than {1 ]-0 0}(11 20), 
which should be enough to counteract its presumed 
higher critical resolved shear stress and produce 
slip on that system. Thus the controlling slip 
.system may change from {110 0}(1120)  to 
1010 
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{0001}(1 150) as the indenter is rotated. In 
order to correspond with the experimentally 
observed intermediate hardness peak (Fig. 2b), 
the change-over must occur when the indenter is 
aligned with its long axis at approximately 60 ~ 
from [0001] .  If the curves are superposed and 
offset to cross at this orientation (Fig. 6), a curve 
of f is obtained which increases steadily from 
[0001] through 60 ~ of rotation and then is 
almost fiat onto [11 50].  A similar effect can be 
argued for the observed behaviour on {11 50}. 

At the change-over point the expected hardness 
due to both slip systems must be the same, and, 
from Equation 6, it can be seen that if the ratio 
of f values at this point is known, then the ratio 
of the critical resolved shear stresses is equal to 
its inverse. 

If it is accepted that there is a good likelihood 
of the "real" constraint being represented by a 
function in the range of those four functions 
described previously, then a range of f values for 
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Figure 6 Superposition of f plots from Fig. 5a and b 
showing how the operation of two slip systems over dif- 
ferent angular ranges ray be combined to explain the 
experimental data of Fig. 2b. 

each slip system is obtained at the change-over 
point. Thus, by considering the crossover on 
{1 TOO}, the ratio CRSS{0001 }(1150) : CRSS 
{1T00}(1 150) must lie between 0.88 and 
4.69. Similarly~ b2r considering the crossover on 
{11 20}, this ratio can be narrowed to lie between 
1.18 and 2.10. 

This simple superposition does not correspond 
precisely to the experimental hardness data, but as 
yet no account has been taken of work hardening 
when there are two operating slip systems. With 
the indenter axis parallel to [0001] ,  (1120) ,  
or (1 TOO) only one slip system is dominantly 
active, but, in the angular range around the cross- 
over, work-hardening effects due to multiple slip 
could cause the observed hardness peak. Although 
there are no locking reactions that can occur 
between any members of the two slip system 
families, new glissile dislocations formed by such 
relations as 

a [i 120 ]  (oool) + 3 [2 ] 101 (o1~0) 
3 

3 [T2 TO] (OOOl),(1oio) (11) 

are likely, because of their geometry, to experience 
an effective resolved shear stress less than that on 
either of the primary systems. This would produce 
the required apparent work-hardening effect. 

The two slip systems {0001}(1120)  and 
{1 TO 0}(11 20)have only four independent shear 
strains between them. However, possible densifi- 
cation, microcracking and elastic compression 
probably removes the necessity to conform to 
the five-shear strains criterion and thus no slip on 

pyramidal slip systems, such as (hh01}(1  1 20), 
seems to be required, although some may occur. 
Further, since the two observed slip systems 
generate the same hardness anisotropies in all 
alpha structure polytypes [50], the deduced 
behaviour is independent of the polytypic state 
of the crystals used in the experiments. 

While other combinations of slip systems might 
produce anisotropies similar to those observed, the 
explanation suggested here seems the simplest 
consistent with the experimental data and likely 
slip geometries in silicon carbide. 

8. Conclusions 
It has been shown that despite the complex nature 
of the deformation process beneath a sharp 
indenter, particularly in the early stages of inden- 
tation when very large non-equilibrium stresses 
prevail, it is reasonable to interpret the exper- 
imentally observed anisotropy in Knoop micro- 
hardness in terms of dislocation slip using a model 
of the effective resolved shear stress type. Further, 
the degree of confidence to be placed in the corre- 
lation of the model's predictions with experimental 
data has been assessed by varying the range of the 
constraint factor within Brookes et  al. 's boundary 
conditions. 

Using the radial displacement model of inden- 
tation deformation, the room temperature yield 
stress of silicon carbide has been deduced to lie in 
the range 12 to 52 GPa. 

It has been shown that the observed hardness 
anisotropy on {0001} planes is consistent with 
that predicted for the {1 TO 0}(1150) slip system 
and that, although some slip systems of the type 
{ h h 0 / } ( l l 2 0 )  would give the same general 
anisotropy, less confidence could be placed in 
these predictions since different constraint factors 
gave widely varying results (cf. Fig. 3c and d). 

However, the observed anisotropy on prism planes 
was found to be incompatible with that predicted 
for {1 TO 0}(1150) alone, and, in this case, the 
joint action of {1T00}(1150> and {0001} 
(1150> was required to match the experimental 
data. Each slip system was found to be preferred 
over a certain range of orientation with a transition 
at about 60 ~ away from [0001].  The ratio of 
CRSS for {0001}(1 1 20) slip to that for {1 TOO} 
<1150> was deduced to be in the range 1.2 to 2.1. 

Thus the evidence indicates that plastic deform- 
ation under hardness indentations in SiC at room 
temperature may occur preferentially on the 
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{1 TO 0}(11 20) slip system, but may also occur 
on the { 0 0 0 1 } ( 1 1 2 0 )  system for certain orien- 
tations of the indenter. 
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